Assessment of Monocytes, MDSCs and Myeloid Cell Populations in Immuno-Oncology Clinical Trials by a Standardized High Complexity Flow Cytometry Approach

Zeni Alfonso¹, Jane Gao¹, Ghanashyam Sarikonda¹, Nadia Katkova¹, Christine Vaupel¹, Ahmad Tarhini², Naveen Dakappagari¹

¹Navigate BioPharma Services, Inc., a Novartis Subsidiary, Carlsbad, CA; ²Cleveland Clinic Taussig Cancer Institute.

Abstract
Advances in novel immunotherapies including checkpoint inhibitors, bispecific antibodies and cytokines have demonstrated exceptional clinical responses. However, their clinical benefit is restricted to only a subset of patients and thus identification of predictive biomarkers that can differentiate patients most likely to respond to a given therapy could be greatly beneficial.

Various myeloid populations including MDSCs (both G-MDSC, M-MDSC), inflammatory (CD14+CD16-) or proangiogenic monocytes (CD14+CD16+) and macrophages were suggested to be potentially predictive of anti-PD1 responses as they affect pathophysiology of cancer through inflammation, suppression of anti-tumor immune response or through pro-angiogenesis.

To enable simultaneous detection of MDSCs and multiple myeloid cell subsets (a process regarded as technically challenging) in a single tube, we developed a 13-parameter high complexity flow cytometry assay and explored it’s utility in understanding the correlates of efficacy in metastatic melanoma patients treated with immunotherapies.

Method Development

Validation Parameters

<table>
<thead>
<tr>
<th>Validation Parameters</th>
<th>Specificity (antibody and assay)</th>
<th>Precision (intra-assay, inter-assay, inter-operator, inter-instrument)</th>
<th>Sensitivity (LLOQ)</th>
</tr>
</thead>
</table>

Specimens

Normal donor PB, BM (as well as PBMCs/BMMCs) spiked with different levels (high, medium, low) of cell lines were used for development and validation.

Staining Procedure

Specimens were incubated with Fc receptor blocker, stained with fixable viability dye (eF506) followed by antibody panel for 20 minutes at RT.

Acquisition/Analysis

Sample data was acquired on a Fortessa X-20 Flow cytometry (BD Biosciences) and analyzed using FlowJo software.

Gating Strategy

Population	Phenotype
MDSC | LIN-HLA-DR-CD11b+CD33+² |
M1 Monocytes | HLA-DR+CD14+CD16-² |
M2 Monocytes | HLA-DR+CD14+CD16+² |
M3 Monocytes | HLA-DR+CD14lowCD16+² |

Validation Summary

Analytical Sensitivity

- Cell frequencies < 0.1% of parent and/or < 100 events exhibited > 25% CV
- LLOQ is 1% of parent with > 100 clustered events

Precision (Acceptance Criteria: CV ≤ 25% above LLOQ)

- Intra-assay: Pass
- Inter-instrument: Pass
- Inter-operator: Pass
- Inter-assay: Pass

PD Biomarker Analysis

The study group consisted of 25 PBMC samples of metastatic melanoma cases treated with ipilimumab and high dose INFα2b evaluated at baseline and at defined timepoints post treatment.

Down Modulation of MDSC by Immunotherapies

9 out 18 patients showed increase in CD14+CD16+ population at 6-weeks time-point.

Differential Modulation of Monocyte Subsets by I-O

8 out 18 patients showed decrease in CD14+CD16+ population at 6-weeks time-point.

Conclusions

- This assay is reproducible and robust enough to detect CD33+CD11b+ MDSC cells and distinct myeloid cell subsets.
- It enables monitoring of dynamic changes in various myeloid populations after cancer treatment.
- Measurement of different myeloid subsets can provide deeper insights into activity of next generation immunotherapies targeting myeloid suppression pathways.

References

2. Picot T et al., Front Oncol, 8:1, 2018

Presented at the International Clinical Cytometry Society (ICCS) Annual Meeting; September 30 - October 2, 2018; Portland, OR, USA

zeni.alfonso@navigatebp.com

Scan this QR code